∫√1+x2n{log(1+x2n)−2nlogx}x3n+1dx=−12n∫√t.logtdt=−12n[23t√tlogt−49t√t] where t=1+1x2n. If this is true enter 1, else enter 0.
Open in App
Solution
Let I=∫√1+x2n{log(1+x2n)−2nlogx}x3n+1dx =∫log{1+x2nx2n}⋅√1+x2nxn.x2n+1dx Put 1+x2nx2n=1+1x2n=t⇒−2nx2n+1dx=dt Therefore I=−12n∫√t.logtdt=−12n[23t√tlogt−49t√t]