The correct option is C −log|x+1|+tan−1x+c
∫(x−1)(x+1)(x2+1)dx
(x−1)(x+1)(x2+1)=A(x+1)+Bx+C(x2+1)
⇒x−1=A(x2+1)+(Bx+C)(x+1)
x−1=(B+C)x+(A+B)x2+(A+C)
⇒B+C=1,A+B=0,A+C=−1
Solving these equations, we get
C=0,A=−1,B=1
(x−1)(x+1)(x2+1)=−1(x+1)+1(x2+1)
Integrating w.r.t x
∫(x−1)(x+1)(x2+1)dx= −log|x+1|+tan−1x+c