The correct option is C log|xex1+xex|+c
Multiply and divide the given expression by ex.
∫ex(x+1)xex(1+xex)dx
Now let, xex=t
Differentiating both sides,
ex(x+1)dx=dt
Substituting the above obtained values into the given expression,
∫dtt(t+1) = ∫t+1−tt(t+1)dt
=∫1tdt−∫1t+1dt
=lnt−ln(t+1)+c
=ln(tt+1)+c
Putting back the value of t,
=ln|(xex1+xex)|+c