The correct option is C 1√2
Let I=∫x2−1(x2+1)√1+x4dx=∫(1+1x2)x2x(1−1x)x√x2+1x2dx
=∫(1−1x2)x2(1+1x)√(x+1x)2−2dx
Substitute x+1x=t⇒(1−1x2)dx=dt
∴I=∫dtt√t2−2=∫dtt2√1−2t2
Substitute √2t=4 and √2t2dt=du, we have
I=−1√2∫du1−u2=1√2cos−1u+C =1√2cos−1⎛⎜
⎜
⎜⎝√2x+1x⎞⎟
⎟
⎟⎠+C
=1√2cos−1(√2xx2+1)+C ∴k=1√2