The correct option is B 14ln(ln(x)−xlnx+x)−12tan−1(lnxx)+C
I=∫x2(1−lnx)ln4x−x4dx
=∫x2(1−lnx)x4((lnxx)4−1)
=∫1−lnxx2((lnxx)4−1)
Put lnxx=t
⇒(1−lnxx2)dx=dt
⇒I=∫dtt4−1
=∫1(t2−1)(t2+1)dt
=12∫(t2+1)−(t2−1)(t2−1)(t2+1)dt
=12∫1t2−1dt−12∫1t2+1dt
I=14ln(t−1t+1)−12tan−1t+C
I=14ln(ln(x)−xlnx+x)−12tan−1(lnxx)+C