The correct option is A 14tan−1((x2+4)4x)+c
∫x2−4x4+24x2+16dx=∫x2−4(x2−8√2+12)(x2+8√2+12)dx
=∫⎛⎜
⎜⎝2+√22√2(x2+8√2+12)+2−√22√2(−x2+8√2−12)⎞⎟
⎟⎠dx
=(12+1√2)∫dx(8√2+12)(1+x28√2+12)+(−12+1√2)∫dx(−x2+8√2−12)
=⎛⎜
⎜⎝12(8√2−12)+1√2(8√2+12)⎞⎟
⎟⎠∫dx1+x28√2+12
=⎛⎜
⎜⎝12(8√2−12)+1√2(8√2+12)⎞⎟
⎟⎠∫dx1−x24(2√2−3)
=14(√2−1)√3+2√2⎛⎜
⎜
⎜
⎜⎝tan−1(x2√3−2√2)−tan−1x√(8√2+12)⎞⎟
⎟
⎟
⎟⎠+c
=−14tan−14xx2+4+c=14tan−1x2+44x+c