I=∫x3+1√x2+xdx
=∫x3+x+1−x√x2+xdx=∫x√x2+xdx−∫x−1√x2+xdx
=12[∫(2x+1)√x2+xdx−∫√x2+xdx]−12∫2x+1−3√x2+xdx
=12⎡⎣∫(2x+1)√x2+xdx−∫√(x+12)2−14dx⎤⎦
−12⎡⎢
⎢
⎢
⎢⎣∫2x+1√x2+xdx−31√(x+12)2−14dx⎤⎥
⎥
⎥
⎥⎦
=12⎡⎢⎣2(x2+x)3/23−x+122√x2+x+14log∣∣∣(x+12)+√x2+x∣∣∣⎤⎥⎦
=12[2√x2+x−3log∣∣∣(x+12)+√x2+x∣∣∣]+C