The correct option is
A x−logx+12log(x2+1)−tan−1x+cI=∫x3−1x3+xdx
I=∫[1−(x+1)(x3+x)]dx
=∫1dx−∫x+1x(x2+1)dx
Now, x+1x(x2+1)=Ax+Bx+Cx2+1 .....(1)
⇒x+1=A(x2+1)+(Bx+C)x
A+B=0
A=1,B=−1,C=1
Put these values in (1), we get
x+1x(x2+1)=1x+−x+1x2+1
⇒I=x−∫1x+−x+1x2+1dx
=x−logx+12log(x2+1)−tan−1x+c