The correct option is A x+3alogx−3a2x−a32x2+x+x22+x33+x44−7sec−1x+log(x+1)−1x+1+2√x+2x32+65x52+27x72+C
∫{(x+a)3x3+1−x41−x−7x√x2−1+x+2(x+1)2+(1+x)3√x}dx
.
=∫x3+3ax2+3a2x+a3x3dx+∫(1−x)(1+x+x2+x3)(1−x)dx−∫7x√x2−1dx+∫(x+1)(x+1)2dx+∫1(x+1)2dx+∫1+3x+3x2+x3x12dx
.
Using integration of each function separately, we get
=(x+3alogx−3a2x−a32x2)+(x+x22+x33+x44)−(7sec−1x)+(log(x+1))(−1x+1)+(2√x+2x32+65x52+27x72)+C