−7sec−1x+log(x+1)−1x+1+2√x+2x3/2+p5x5/2+2rx7/2. Find the value of k+m+n+p−r.
Open in App
Solution
Let I=∫((x+a)3x3+1−x41−x−7x√x2−1+x+2(x2+1)2+(1+x)3√x)dx =I1+I2+I3+I4+I5 such that I1=∫x3+a3+3x2a+3xaxdx=∫(x2+a3x+3xa+3a)dx=x33+a3logx+32x2a+3ax I2=∫(1−x4)1−xdx =∫(1−x)(1+x)(1+x2)(1−x)dx=∫(1+x)(1+x2)dx =∫(x3+x2+x+1)dx=x44+x33+x22+x I3=∫7x√x2−1dx put √x2−1=0⇒x√x2−1dx=du ∴I3=7∫1u2+1du=7tan−1u=7tan−1(√x2−1)=−7sec−1x I4=∫x+2(x2+1)2dx Put x=tant⇒dx=sec2tdt ∴I4=∫cos2t(tant+2)dt =∫(−2sin2t+tant+sin2t(−tant)+2)dt=(2x−1)2(x2+1)+tan−1x I5=∫(1+x)3√xdx=∫1+x3+3x+3x2√xdx =∫(1√x+x52+3x12+x32)dx=2x12+2x727+x322+2x525 ∴k+m+n+p+r=7