The correct option is A −√9+8x−x2+4sin−1(x−45)+C
I=∫x√9+8x−x2dx
We can write x=A(8−2x)+B
On comparing A=−12, B=4
∴I=∫−12(8−2x)√9+8x−x2dx+4∫dx√9+8x−x2
Put 9+8x−x2=t in the first integral
⇒(8−2x)dx=dt
∴I=−12∫1√tdt+4∫dx√9−(x2−8x)
=−12√t12+4∫dx√25−(x2−8x+16)
=−√9+8x−x2+4∫dx√52−(x−4)2
=−√9+8x−x2+4sin−1(x−45)+C