The correct option is C 1a−b[25(x+a)52−2a3(x+a)32−25(x+b)52+23b(x+b)32]+C
I=∫x(√x+a+√x+b)dx
=∫x(√x+a−√x+b)(x+a)−(x+b)dx
=1a−b∫(x√x+a−x√x+b)dx
=1a−b∫{(x+a−a)√x+a−(x+b−b)√x+b}dx
=1a−b∫{(x+a)3/2−a(x+a)1/2−(x+b)3/2+b(x+b)1/2}dx
=1a−b[25(x+a)5/2−2a3(x+a)3/2−25(x+b)5/2+23b(x+b)3/2]+C