The correct option is C log∣∣∣(x−2)2x−1∣∣∣+C
Let x(x−1)(x−2)=A(x−1)+B(x−2)
⇒x=A(x−2)+B(x−1) ............ (1)
Substituting x=1 and 2 in (1), we obtain
A=−1 and B=2
∴x(x−1)(x−2)=−1(x−1)+2(x−2)
⇒∫x(x−1)(x−2)dx=∫{−1(x−1)+2(x−2)}dx
=−log|x−1|+2log|x−2|+C
=log∣∣∣(x−2)2x−1∣∣∣+C