The correct option is B πa+b
∫∞−∞x2(x2+a2)(x2+b2)dx
We will resolve x2(x2+a2)(x2+b2) into partial fraction.
Let x2=y
x2(x2+a2)(x2+b2)=y(y+a2)(y+b2)
Now, y(y+a2)(y+b2)=A(y+a2)+B(y+b2) .....(1)
⇒y=A(y+b2)+B(y+a2)
When y=−a2,A=a2a2−b2
When y=−b2,B=−b2a2−b2
Put this value in (1)
y(y+a2)(y+b2)=a2(a2−b2)(y+a2)−b2(a2−b2)(y+b2)
Replacing y by x2
x2(x2+a2)(x2+b2)=a2(a2−b2)(x2+a2)−b2(a2−b2)(x2+b2)
⇒∫∞−∞x2(x2+a2)(x2+b2)dx=∫∞−∞a2(a2−b2)(x2+a2)dx−∫∞−∞b2(a2−b2)(x2+b2)dx
=a(a2−b2)[tan−1(xa)]∞−∞−b(a2−b2)[tan−1(xb)]∞−∞
=aπ(a2−b2)−bπ(a2−b2)
=π(a+b)