∫{1logx−1(logx)2}dx
Now, take logx=t
⇒ x=et
⇒ dx=etdt
The given integral becomes,
∫(1t)−(1t2)dt
⇒ ∫et(1t−1t2)dt
Now, we have a formula,
∫ex(f(x)+f′(x))dx=exf(x) ------ ( 1 )
So here, left f(x)=1t⇒f′(x)=−1t2
So, it is of form ( 1 )
∴ The given integral =exf(x)=et(1/t)+c
Substituting value of t we get,
⇒ elogx(1logx)+c
⇒ xlogx+c