∫((lnx)−11+(lnx)2)2dx is equal to
(where c is constant of integration)
A
x1+lnx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x(1−lnx)2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x1+(lnx)2+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x(1+lnx)2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cx1+(lnx)2+c Let lnx=t ⇒x=et ⇒dx=etdt ∴∫(t−11+t2)2etdt=∫et(t2−2t+1(1+t2)2)dt=∫et(t2+1(1+t2)2+(−2t)(1+t2)2)dt=∫et(11+t2+−2t(1+t2)2)dt↓f(x)↓f′(x)=et1+t2+c[∵∫ex{f(x)+f′(x)}dx=exf(x)+c]
Hence, ∫((lnx)−11+(lnx)2)2dx=x1+(lnx)2+c