∫(xxsinx+cosx)2dx is equal to (where C is a constant of integration)
A
tanx−xsecxxsinx+cosx+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
secx+xtanxxsinx+cosx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
secx−xtanxxsinx+cosx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tanx+xsecxxsinx+cosx+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Atanx−xsecxxsinx+cosx+C ∫x2(xsinx+cosx)2dx ∵ddx(xsinx+cosx)=xcosx
using integration by parts method: =∫xcosx(xsinx+cosx)2(xcosx)dx=xcosx[−1xsinx+cosx]