The correct option is
A esin−1x(√1−x2+x2)+sin−1x+cLet I=∫esin−1xdx and J=∫1√1−x2dx
Let x=sinθ
∴dx=cosθ dθ
∴I=∫eθcosθ dθ
Using chain rule of integration,
I=cosθ∫eθdθ−∫(−sinθ)eθdθ+c
∴I=eθcosθ+sinθ∫eθdθ−∫cosθ eθdθ+c
∴I=eθcosθ+eθsinθ−I+c
∴I=eθ(cosθ+sinθ2)+c
Substituting θ=sin−1x, we have
I=esin−1x(√1−x2+x2)+c
Now, for J also, assume that x=sinθ
∴J=∫1√1−sin2θcosθdθ
∴J=∫dθ
∴J=θ+c
∴J=sin−1x+c
Hence, required answer is I=esin−1x(√1−x2+x2)+sin−1x+c