wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(sec2(23x)+1sin2(34x)+sin(23x)cos2(23x)+cosx cosec2x+cosec (3x2)cot(3x2))dx

A
13tan(23x)+14[cot(34x)]13sec(23x)cosec x13cosec (3x2).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
13tan(23x)14[cot(34x)]13sec(23x)cosec x13cosec (3x2).
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
13tan(23x)14[cot(34x)]13sec(23x)13cosec (3x2).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13tan(23x)14[cot(34x)]13sec(23x)+cosec x13cosec (3x2).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 13tan(23x)14[cot(34x)]13sec(23x)cosec x13cosec (3x2).
I=(sec2(23x)+1sin2(34x)+sin(23x)cos2(23x)+cosxcosec 2x+cosec (3x2)cot(3x2))dx

I=sec2(23x)dx+1sin2(34x)dx+sin(23x)cos2(23x)dx
+cosxcosec 2xdx+cosec (3x2)cot(3x2)dx

I=I1+I2+I3+I4+I5
Where
I1=sec2(23x)dx=13tan(23x)

I2=1sin2(34x)dx=csc2(34x)dx=14(cot(34x))

I3=sin(23x)cos2(23x)dx=tan(23x)sec(23x)dx=13sec(23x)

I4=cosxcosec 2xdx=cotxcscxdx=cscx

I5=cosec (3x2)cot(3x2)dx=13cosec (3x2)
Therefore
I=13tan(23x)14[cot(34x)]13sec(23x)
cosec x13cosec (3x2)
Hence, option 'B' is correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon