∫[sin2(9π8+π4)−sin2(7π8+x4)]dx∫[sin2(π+π8+π4)−sin2(π−π8+π4)]dx=∫[sin2(π8+x4)−sin2(π8−x4)]dx12∫[2sin2(π8+x4)−2sin2(π8−x4)]dx=12∫[1−cos(π4+x2)−{1−cos(π4−x2)}]dx=12∫[1−cos(π4+x2)−1+cos(π4−x2)]dx=12∫[cos(π4−x2)−cos(π4+x2)]dx
Putting
π4−x2=t⇒−dx2=dt⇒dx=−2dt
=−22∫[cost−cos(π4+π4−t)]dt=−∫[cost−cos(π2−t)]dt=−∫(cost−sint)dt
=−[sint+cost]+c=−[sin(π4−x2)+cos(π4−x2)]+c