∫(sin2x−cos2x)dx=1√(k)sin(2x−a)+b. Find the value of k.
Open in App
Solution
Let I=∫(sin2x−cos2x)dx =√2∫(1√(2)sin2x−1√(2)cos2x)dx =−√2.∫cos(2x+π4)dx=−√2.12sin(2x+π4)+c =1√(2)sin(π+2x+π4)+b(∵sin(π+θ)=−sinθ) =1√(2)sin(2x−(−5π4))+b Therefore a=−5π4,k=2,b is any constant