The correct option is A 0
Let I=π2∫0log[4+3cosx4+3sinx] dx ....(i)
Using property of integration
I=π2∫0log[4+3sinx4+3cosx] dx ....(ii)
Adding equation (i) and (ii), we get,
2I=π2∫0log[4+3cosx4+3sinx] dx+π2∫0log[4+3sinx4+3cosx] dx
2I=π2∫0log{[4+3cosx4+3sinx]×[4+3sinx4+3cosx]} dx
2I=π2∫0log1 dx=π2∫00 dx=0
I=0