The correct option is
B π3∫π20x√1−x2dx
Let x=sinθ⇒dx=cosθdθ
=∫π20sinθ√1−sin2θcosθdθ
=∫π20sinθ√cos2θcosθdθ
=∫π20sinθcos2θdθ
=∫π20sinθcosθcosθdθ
=12∫π202sinθcosθcosθdθ
=12∫π20sin2θcosθdθ
=14∫π202sin2θcosθdθ
=14∫π20(sin3θ+sinθ)dθ
=14[−cos3θ3−cosθ]π20
=−14[cos3θ3+cosθ]π20
=−14⎡⎢
⎢⎣cos3π23−cos03+cosπ2−cos0⎤⎥
⎥⎦
=−π4[0−13+0−1]
=−π4[−1+33]
=π4[43]=π3