The correct option is D 1
Let I=π/2∫0(1+sin3x1+2sinx)dx
⇒I=π/2∫0⎛⎜
⎜
⎜
⎜⎝1+sin3(π2−x)1+2sin(π2−x)⎞⎟
⎟
⎟
⎟⎠dx
⇒I=π/2∫0(1−cos3x1+2cosx)dx
Now, I=−π/2∫0(cos3x−11+2cosx)dx
⇒I=−π/2∫0(4cos3x−3cosx−11+2cosx)dx
⇒I=−π/2∫0(4cos3x+2cos2x−2cos2x−cosx−2cosx−11+2cosx)dx
⇒I=−π/2∫0(1+2cosx)(2cos2x−cosx−1)1+2cosxdx
⇒I=−π/2∫0(cos2x−cosx)dx
⇒I=π/2∫0(cosx−cos2x)dx
=1−0=1
Similarly, I1=π/2∫0(cos3x+12cosx−1)dx
⇒I1=π/2∫0(2cosx−1)(2cos2x+cosx−1)2cosx−1dx
⇒I1=π/2∫0(cosx+cos2x)dx
=1+0=1