The correct option is B π232
Let, I=π∫0x3cos4xsin2x(π2−3πx+3x2)dx⋯(i)
Using property a∫0f(x)dx=a∫0f(a−x)dx
I=π∫0(π−x)3cos4(π−x)sin2(π−x)π2−3π(π−x)+3(π−x)2dx
=π∫0(π3−x3−3π2x+3πx2)cos4xsin2x(π2−3πx+3x2)dx⋯(ii)
Adding (i) and (ii) we have
2I=π∫0(π3−3π2x+3πx2)cos4xsin2x(π2−3πx+3x2)dx
⇒2I=ππ∫0cos4xsin2xdx
⇒2I=2ππ/2∫0cos4xsin2xdx∴I=ππ/2∫0cos4xsin2xdx
Using walli's formula, we get
I=π(3⋅1)(1)6⋅4⋅2⋅π2=π232{∵Im,n=(m−1)(m−3)(m−5)⋯(n−1)(n−3)(n−5)(m+n)(m+n−2)(m+n−4)⋯⋅π2, when both m,n is even}