The correct option is C 5
Let I=16∫6logex2logex2+loge(x2−44x+484)dx
⇒I=16∫62lnx2lnx+2ln(22−x)dx
⇒I=16∫6lnxlnx+ln(22−x)dx ⋯(i)
Using the property, I=b∫af(x)f(x)+f(a+b−x)dx=b∫af(a+b−x)f(a+b−x)+f(x)dx
∴I=16∫6ln(22−x)ln(22−x)+lnxdx ⋯(ii)
Adding (i) and (ii), we get
2I=16∫6dx=10
∴I=5