The correct option is A 113ln∣∣
∣
∣∣4+6tanx29−6tanx2∣∣
∣
∣∣+C
I=∫dx5sinx+12cosx
Let, tanx2=t
⇒x=2tan−1t,dx=2dt1+t2,sinx=2t1+t2,cosx=1−t21+t2
So, integral becomes
I=∫21+t25⋅2t1+t2+12⋅1−t21+t2dt =∫2dt10t+12−12t2 =212∫dt1−(t2−1012t) =16∫dt1+25144−(t−512)2 =16∫dt(1312)2−(t−512)2 =16⋅12⋅1312ln∣∣
∣
∣∣1312+t−5121312−t+512∣∣
∣
∣∣+C =113ln∣∣
∣
∣
∣∣46+t96−t∣∣
∣
∣
∣∣+C =113ln∣∣∣4+6t9−6t∣∣∣+C =113ln∣∣
∣
∣∣4+6tanx29−6tanx2∣∣
∣
∣∣+C