wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

dx5sinx+12cosx is equal to
(where C is integration constant)

A
113ln∣ ∣ ∣4+6tanx296tanx2∣ ∣ ∣+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
126ln∣ ∣ ∣46tanx29+6tanx2∣ ∣ ∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
113ln∣ ∣ ∣46tanx29+6tanx2∣ ∣ ∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
126ln∣ ∣ ∣4+6tanx296tanx2∣ ∣ ∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 113ln∣ ∣ ∣4+6tanx296tanx2∣ ∣ ∣+C
I=dx5sinx+12cosx
Let, tanx2=t
x=2tan1t,dx=2dt1+t2,sinx=2t1+t2,cosx=1t21+t2
So, integral becomes
I=21+t252t1+t2+121t21+t2dt =2dt10t+1212t2 =212dt1(t21012t) =16dt1+25144(t512)2 =16dt(1312)2(t512)2 =16121312ln∣ ∣ ∣1312+t5121312t+512∣ ∣ ∣+C =113ln∣ ∣ ∣ ∣46+t96t∣ ∣ ∣ ∣+C =113ln4+6t96t+C =113ln∣ ∣ ∣4+6tanx296tanx2∣ ∣ ∣+C

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon