∫dx(x+1)√2x−3 equals to (where C is integration constant)
A
2√5tan−1(√2x−35)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2√5tan−1(√2x−3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1√5tan−1(√2x−32)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−2√5tan−1(√2x−35)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2√5tan−1(√2x−35)+C Let I=∫dx(x+1)√2x−3
Putting 2x−3=t2⇒dx=tdt
we get, I=∫tdt(t2+32+1)t=∫2dtt2+5 =2√5tan−1(t√5)+C{∵∫1t2+a2dx=1atan−1(ta)+C} =2√5tan−1√2x−35+C