Integration to Solve Modified Sum of Binomial Coefficients
∫√x2+4x+6 dx ...
Question
∫√x2+4x+6dx is equal to
(where C is integration constant)
A
x+22√x2+4x+6+ln∣∣x+2+√x2+4x+6∣∣+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ln∣∣x+2+√x2+4x+6∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2√x2+4x+6+ln∣∣x+√x2+4x+6∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12tan−1(x+2√2)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ax+22√x2+4x+6+ln∣∣x+2+√x2+4x+6∣∣+C Let I=∫√x2+4x+6dx=∫√(x+2)2+(√2)2dx⇒I=(x+2)2√x2+4x+6+22ln∣∣(x+2)+√x2+4x+6∣∣+C[∵∫√x2+a2dx=x2√x2+a2+a22ln∣∣x+√x2+a2∣∣+C]∴I=(x+2)2√x2+4x+6+ln∣∣(x+2)+√x2+4x+6∣∣+C