Let I=∫log(x+√x2+a2)dx
=∫1.log(x+√x2+a2)dx
applying ILATE rule
Let u=log(x+√x2+a2) and v=1
∫uvdx=u∫vdx−∫[dudx∫vdx]dx
=log(x+√x2+a2)∫1.dx−∫[∫ddx(log(x+√x2+a2))1.dx]dx
=xlog(x+√x2+a2)−12∫2x√x2+a2dx
Let t=x2+a2⇒dt=2xdx
=xlog(x+√x2+a2)−12∫dt√t
=xlog(x+√x2+a2)−12∫t−12dt
=xlog(x+√x2+a2)−12t−12+1−12+1+c
=xlog(x+√x2+a2)−12t1212+c
=xlog(x+√x2+a2)−√t+c
=xlog(x+√x2+a2)−√x2+a2+c where t=x2+a2