The correct option is D π2ab
I=∫π0xdxa2cos2x+b2sin2xI=∫π0(π−x)dxa2cos2(π−x)+b2sin2(π−x)
Using property of definite integration ∫a0f(x)=∫a0f(a−x)
2I=π∫π0dxa2cos2x+b2sin2xI=π2∫π0dxa2cos2x+b2sin2xI=π∫π20dxa2cos2x+b2sin2x
Dividing numerator and denominator by cos2x
I=π∫π20sec2xdxa2+b2tan2x
let t=btanxdt=bsec2xdx
then
I=πb∫∞0dta2+t2=πb1atan−1ta]∞0=π2ab