wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π/20sin8xlog(cotx)dxcos2x.

Open in App
Solution

I=π20sin8xlog(co+x)cos2xdx(i)byapplyingpropertyofintegrationI=a0faxdx=a0f(ax)dxI=π20sin8(π2x)log[cot(π2x)]cos2(π2x)I=π20sin(4x8x)log(tanx)cos(π2x)dxI=π20sin8xlog(1cotx)cos2xdxI=π20sin8xlog(cotx)1cos2xI=π0sin8xlog(cotx)cos2xI=π0sin8xlogcotxcos2xdx=II=I2I=0I=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon