I=∫π20sin8xlog(co+x)cos2xdx→(i)byapplyingpropertyofintegrationI=∫a0faxdx=∫a0f(a−x)dxI=∫π20sin8(π2−x)log[cot(π2−x)]cos2(π2−x)I=∫π20sin(4x−8x)log(tanx)cos(π−2x)dxI=∫π20−sin8xlog(1cotx)−cos2xdxI=∫π20−sin8xlog(cotx)−1−cos2xI=∫π0−sin8xlog(cotx)cos2xI=∫π0sin8xlogcotxcos2xdx=−II=−I2I=0I=0