∫π−π(cosax−sinbx)2dx where a and b are integer is equal to
A
−π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D2π ∫π−π(cosax−sinbx)dx=∫π−π(cos2ax+sin2bx−2cosaxsinbx)dx =∫π−π(cos2ax2+12)dx+∫π−π(cos2ax2−12)dx −2∫π−π(sin(2a+2b)x−sin(2a+2b)x)dx =[sin2ax4a−2sinbx4a+x−cos(x(a−b))a−b+cos(x(a+b))a+b]π−π=2π