wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sec2xlog(1+sin2x)dx=tanxlog(1+sin2x)2x+ktan1ktanx. Find the value of k.

Open in App
Solution

Integrating by parts, we get
I=tanxlog(1+sin2x)tanx1+sin2x.2sinxcosxdx or I=tanxlog(1+sin2x)2I1 ...(A)
where I1=sin2x1+sin2xdx=(111+sin2x)dx
=xsec2xdx(tan2x+1)+tan2x
=xdt(2t2+1)=x12tan1t2
Putting the value of I1 in (A), we get
I=tanxlog(1+sin2x)2x+2tan12tanx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon