Integrating by parts, we get
I=tanxlog(1+sin2x)−∫tanx1+sin2x.2sinxcosxdx or I=tanxlog(1+sin2x)−2I1 ...(A)
where I1=∫sin2x1+sin2xdx=∫(1−11+sin2x)dx
=x−∫sec2xdx(tan2x+1)+tan2x
=x−∫dt(2t2+1)=x−1√2tan−1t√2
Putting the value of I1 in (A), we get
I=tanxlog(1+sin2x)−2x+√2tan−1√2tanx