∫sec3xdx=12[secxtanx+log(?+tanx)]+c Choose the appropriate option to replace the question mark in the above equation.
A
sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cosx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
secx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
cotx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Dsecx I=∫sec3xdxd =∫secxsec2xdx =∫√1+tan2x.sec2xdx Put tanx=zorsec2xdx=dz ∴I=∫√1+z2dz =z√z2+12+12log∣∣z+√z2+1∣∣+c =tanxsecx2+12log(tanx+secx)+c =12[secxtanx+log(secx+tanx)]+c