The correct option is D ddxh(x)=8(x+1)
I=∫sin−1(2x+2√4x2+8x+13)dx
=∫sin−1⎛⎜
⎜⎝2x+2√(2x+2)2+32⎞⎟
⎟⎠dx
Put 2x+2=3tanθ, θ∈(−π2,π2)
⇒2dx=3sec2θdθ
I=∫sin−1(3tanθ3secθ)32sec2θdθ
=32∫θsec2θdθ
=32[θtanθ−∫tanθdθ]
=32[θtanθ−ln|secθ|]+k1
=32⎡⎣2x+23tan−1(2x+23)−ln⎛⎝√1+(2x+23)2⎞⎠⎤⎦+k1
=32[23(x+1)tan−1(23(x+1))−ln√4x2+8x+139]+k1,
⇒I=(x+1)tan−1(2x+23)−34ln(4x2+8x+139)+k1
⇒I=(x+1)tan−1(2x+23)−34ln(4x2+8x+13)+k
where k=k1+32ln3
⇒f(x)=x+1
g(x)=2x+23
h(x)=4x2+8x+139 or 4x2+8x+13
Since, h(−1)=9
∴h(x)=4x2+8x+13
=4(x+1)2+9
ddxh(x)=8(x+1)