The correct option is C −3cos2x64+cos6x192+C
∫sin3xcos3x dx=∫cosx(1−sin2x)sin3x dx
Let sinx=t
⇒cosx dx=dt
⇒ ∫(t3)(1−t2)dt
=∫(t3−t5)dt=t44−t66+C
=sin4x4−sin6x6+C
OR
∫sin3xcos3x dx
=∫18(8sin3xcos3x)dx=∫18(2sinxcosx)3dx=∫18sin32x dx
{∵sin3x=3sinx−sin3x4}
=18∫3sin2x−sin6x4dx=132∫(3sin2x−sin6x)dx=−3cos2x64+cos6x192+C