∫sin{2tan−1√3−x3+x}dx=32cos−1x3+34sin(2cos−1x3). If this is true enter 1, else enter 0.
Open in App
Solution
Let I=∫sin{2tan−1√3−x3+x}dx Put x=3cosθ⇒dx=−3sinθdθ And using √1−cosθ1+cosθ=tanθ2 We get I=−3∫sinθsinθdθ=−32∫(1−cos2θ)dθ =−32{θ−sin2θ2}=−32cos−1x3+34sin(2cos−1x3)