∫√1+x29dx is equal to
(where C is integration constant)
A
x6√x2+9+32ln|x+√x2+9|+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x6√x2+9+32sin−1(x3)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x6√x2+9−32ln|x+√x2+9|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x6√x2+9+12ln|x+√x2+9|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ax6√x2+9+32ln|x+√x2+9|+C I=∫√1+x29dx=13∫√9+x2dx=13∫√(3)2+x2dx
We know that, ∫√x2+a2dx=x2√x2+a2+a22ln|x+√x2+a2|+C∴I=13[x2√x2+9+92ln|x+√x2+9|]+C=x6√x2+9+32ln|x+√x2+9|+C