∫√1+x2x2−x4dx=∫1+x2x√1−x4dx=∫dxx√(1−x4)+∫xdx√(1−x4)=∫x3dxx4√1−x4+∫xdx√(1−x4)=−12∫udu(1−u2)u+12∫dv√(1−v2)
(putting 1−x4=u2,−4x3 dx=2u du in the first integral and x2=v,2x dx=dv in the second integral)
=12∫duu2−1+12sin−1v=12×12ln∣∣∣u−1u+1∣∣∣+12sin−1v+C=14ln∣∣
∣∣√(1−x4)−1√(1−x4)+1∣∣
∣∣+12sin−1(x2)+C