Domain and Range of Basic Inverse Trigonometric Functions
∫√cos x-cos3 ...
Question
∫√cosx−cos3x1−cos3xdx, x∈(0,π2)is equal to
A
23cos−1(cos32x)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
23cos−1(cos12x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
32cos−1(cos32x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
32sin−1(cos32x)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A23cos−1(cos32x)+C ∫√cosx−cos3x1−cos3xdx=∫√cosx1−cos3xsinxdx =−∫√t1−t3dt=−∫√t√1−(t32)2dt where cosx=t,−sinxdx=dt =−23∫32√t√1−(t32)2dt =23cos−1(t32)+C =23cos−1(cos32x)+C