∫tan(ax+b2+d2)dx,a≠0 is equal to
(where C is the constant of integration and a,b and d are fixed constants)
A
ln|sec(ax+b2+d2)|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−ln|cos(ax+b2+d2)|+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ln|sec(ax+b2+d2)|a+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−ln|cos(ax+b2+d2)|a+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−ln|cos(ax+b2+d2)|a+C ∫tan(ax+b2+d2)dx=ln|sec(ax+b2+d2)|a+C (∵∫tan(αx+β)dx=ln|sec(αx+β)|α+C,α≠0) ⇒ln|sec(ax+b2+d2)|a+C=ln(1|cos(ax+b2+d2)|)a+C ⇒−ln|cos(ax+b2+d2)|a+C