The correct option is D
16x3−12[x2Sin2x2+xCos2x2−Sin2x4]+c
∫x2sin2xdx
∫x2(1−cos2x)dx
=∫x2dx−∫x2cos2xdx
=x33−∫x2(1+cos2x2)dx=x33−[∫x22dx+∫x2cos2x2dx]
=x33−x36−12∫x2cos2xdx.
∫x2cos2xdx=+x2sin2x2−12∫2xsin2xdx
∫xsin2xdx=−xcos2x2+∫1.cos2xdx
=−xcos2x2+sin2x2
∫x2cos2xdx=+x2sin2x2+[−xcos2x2+sin2x2]
∫x2sin2x=x36−12[x2sin2x2+xcos2x2−sin2x4]+c