The correct option is A √1+x2⋅ln(x+√1+x2)−x+C
Let I=∫xln(x+√1+x2)√1+x2dx
Let x+√1+x2=t ⇒√1+x2=t−x
⇒1+x2=t2+x2−2tx
⇒x=t2−12t …(1)
And (1+2x2√1+x2)dx=dt
⇒x+√1+x2√1+x2dx=dt
⇒t√1+x2dx=dt
⇒dx√1+x2=dtt
I=∫t2−12t⋅(lnt)tdt=12∫lnt dtI1−12∫lntt2dtI2
I1=12∫lnt dt
Applying by parts, we get
I1=12(tlnt−t)+C1
I2=12∫lnt⋅1t2dt
Again applying by parts
=12[lnt∫dtt2−∫(d(lnt)dt∫dtt2)dt]
=12[(lnt(−1t)−∫−1t2dt)]
I2=12[−lntt−1t]+C2
⇒I=12(tlnt−t+lntt+1t)+C
=(t+1t)lnt+1t−t+C
From equation (1), 1t−t=−2x
and 1t+t=√(1t−t)2+4=2√x2+1
I=12[2√1+x2ln(x+√1+x2)−2x+C]
∴I=√1+x2⋅ln(x+√1+x2)−x+C