The correct option is D logsecx2−12.
Let I=∫x
⎷[2sin(x2−1)−sin2(x2−1)2sin(x2−1)+sin2(x2−1)]dx
Put x2−1=t⇒2xdx=dt
Using
(N′)2⇒2sint−sin2t=2sint(1−cost)(D′)2⇒2sint(1+cost)
And 1−cost1+cost=2sin2(t/2)2cos2(t/2)=tan2t2
Therefore
I=12∫tant2dt=logsect2=logsecx2−12
Hence, option 'B' is correct.