cosx is R.P. of eix i.e. of cosx+isinx∴I=R.P. of ∫xexeixdx=∫xe(1+i)xdx
Intergrating by parts
I=x.e1+ix(1+i)−1(1+i)∫e(1+i)x.1dx
I=x.e1+ix(1+i)−1(1+i)e(1+i)x
=e(1+i)x(1+i)2[x(1+i)−1]=ex.eix2i[x+xi−1]
=ex[(x−1)+ix](cosx+isinx)2i
Real part of above is imaginary part of N'
I=ex2[(x−1)sinx+xcosx]