The correct option is D unequal roots
L=limx→0sinx+aex+be−x+cl(1+x)x3
=limx→0(x−x33!+....)+a(1+x1!+x22!+x33!+....)+b(1−x1!+x22!−x33!+....)+c(x−x22+x33+....)x3
=limx→0(a+b)+(1+a−b+c)x+(a2+b2−c2)x2+(−13!+a3!−b3!+c3)x3+....x3
or a+b=0,1+a−b+c=0,a2+b2−c2=0
and L=−13!+a3!−a3!+c3
Solving the first three equations, we get c=0,a=−1/2,b=1/2
Then, L=−1/3.
The given equation ax2+bx+c=0 reduces to x2−x=0 or x=0,1.
Hence, option 'D' is correct.