We have cos7π8=cos(π−π8)=−cosπ8
cos5π8=cos(π−3π8)=−cos3π8
L.H.S. (1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)=1b
=(1−cos2π8)(1−cos23π8)
=sin2π8sin23π8
=14(2sin2π8)(2sin23π8)
=14[(1−cosπ4)(1−cos3π4)] ∵[1−cosθ=2sin2θ2]
=14[(1−1√2)(1+1√2)]=14(1−12)=18= R.H.S.
Ans: 8