The correct option is C (-11/2)
(2x2+3x+5)12+(x2+3x+20)12=1
Let 2x2+3x=a
Then (a+5)12+(a+20)12=1
Squarer both the side
Then a+5+a+20+2(a+5)12(a+20)12=1
Or 2a+25−1=−2(a+5)12(a+20)12
Or 2a+24=−2(a+5)12(a+20)12
Squarer both the side
a2+24a+144=(a2+25a+100)
Or a2+24a+144−(a2+25a+100)=0
Or −a+44=0
Take a=2x2+3x
-(2x2+3x)+44=0
Or -−2x2−11x+8x+44=0⇒−2x(2x+11)+4(2x+11)=0⇒(2x+11)(2x−4)=0
So x=2 or x=−112