(cosA+cosBsinA−sinB)n+(sinA+sinBcosA−cosB)n=xcotnA−B2 or a, accordingly as n is even or odd. Find x+a
Open in App
Solution
L.H.S. =⎛⎜⎝2cosA+B2cosA−B22cosA+B2sinA−B2⎞⎟⎠n+⎛⎜⎝2sinA+B2cosA−B2sinA+B2sinB−A2⎞⎟⎠n =(cotA−B2)n+(−cotA−B2)n[∵sin(−θ)=−sinθ] =cotnA−B2+(−1)ncotnA−B2=cotnA−B2[1+(−1)n] =0, if n is odd 2cotnA−B2, if n is even. Therefore. x+a=2+0=2 Ans: 2